Las Endorfinas

Las endorfinas son pequeñas proteínas derivadas de un precursor producido a nivel de la hipófisis, una pequeña glándula ubicada en la base del cerebro.

Las endorfinas, también llamadas hormonas de la felicidad, son sustancias químicas producidas por el propio organismo estructuralmente muy similares a los opioides (opio, morfina, heroína) pero sin sus efectos negativos. Se calcula que hay alrededor de 20 tipos diferentes de endorfinas distribuidas por todo el cuerpo, parte de ellas están localizadas en la glándula pituitaria y son las encargadas de hacer posible la comunicación entre las neuronas. Estos químicos naturales producen una fuerte analgesia, estimulan los centros de placer del cerebro creando situaciones satisfactorias que contribuyen a eliminar el malestar y disminuir las sensaciones dolorosas. Cuando sentimos dolor las endorfinas actúan como analgésicos endógenos inhibiendo la transmisión del dolor al cerebro.

Las endorfinas son producidas por el organismo en respuesta a múltiples sensaciones, entre la que se encuentra el dolor y el stress, también influye en la modulación del apetito, la liberación de hormonas sexuales y el fortalecimiento del sistema inmunitario. Cuando sentimos placer estas sustancias químicas se multiplican y envían mensajes a nuestro cerebro a los linfocitos y a otras células responsables de la defensa de virus y bacterias que invaden el organismo.
Las endorfinas tienen una vida muy corta ya que son eliminadas por determinadas enzimas que produce el organismo. Es una medida para mantener el equilibrio de nuestro cuerpo y no ocultar señales de alarma.

Existen varias formas para estimular la producción de endorfinas, lo cierto es que cuando realizamos actividades placenteras aparece en el organismo un mayor flujo de estas hormonas, lo que provoca un cambio en nuestra actitud y nuestro estado de ánimo mejora considerablemente.

* El stress derivado del ejercicio físico provoca un aumento de la cantidad de endorfinas presente en sangre y en el líquido encefalorraquídeo. Se retrasa la fatiga lo que produce una sensación de vitalidad y bienestar.
* Las caricias, besos y abrazos estimulan la descarga de endorfinas, además de feromonas, hormonas que aumentan el atractivo de la persona y cautivan a la pareja. La combinación de estas dos hormonas produce una situación de intenso placer, durante y después de la relación sexual.
* La risa tiene una notoria influencia sobre la química del cerebro y del sistema inmunitario, por eso es la mejor fuente de endorfinas. Basta con esbozar una sonrisa para que nuestro cuerpo comience a segregar endorfinas especialmente encefalinas.
* El contacto con la naturaleza nos llena de energía y buen humor. La atmósfera que se respira en el campo o la playa cargada de iones negativos estimula las hormonas de la felicidad.
* Cuando nuestra mente esta relajada las endorfinas se segregan con mayor facilidad y en mayor cantidad. Es muy recomendable practicar relajación, yoga y tai-chi.
* El masaje provoca grandes descargas de bienestar, ya que las terminaciones nerviosas trasmiten el roce de las manos sobre la piel hasta el cerebro activando la secreción de hormonas de la felicidad.
* La música melódica provoca una importante liberación de endorfinas, consiguiendo una disminución de la frecuencia cardiaca y respiratoria así como una importante relajación muscular.

Mediante técnicas de visualización, evocar buenos momentos, pensar en hechos felices o soñar despiertos con nuevos proyectos y anhelos es la forma más sencilla de producir las hormonas de la felicidad cuando necesitemos recuperar vitalidad y energía.

Los siRNA contra el Ébola


El Ébola, la enfermedad infecciosa más violenta y letal de todas y reina de las fiebres hemorrágicas (como el dengue), es una grave amenaza a la salud pública, porque no tiene cura y la tasa de mortalidad es superior al 80%, y también la paz mundial, ya que está clasificada como de grado A en las armas bioterroristas. Esta terrible enfermedad fue descrita por primera vez en 1976 en una misión al río Ébola en Zaire (actualmente, República del Congo). Los pacientes infectados con este virus tienen una muerte sumamente dolorosa ya que los órganos literalmente se te derriten. La transmisión de este virus es sólo por contacto directo con la sangre de un infectado, y a pesar de ser sumamente infecciosa, en su estado de incubación, no lo es. No se han reportado casos de contagio por vía aérea como en los virus de la gripe y también es altamente letal en otros primates.

El viernes, Geisbert et al. publicó en la revista The Lancet una prometedora cura para esta terrible enfermedad y nuevas estrategias para el tratamiento de otras enfermedades virales. ¿Qué fue lo que hicieron?. Simplemente usaron pequeños ARN de interferencia (siRNA) los cuales son pequeñas secuencias de ARN de unos 21 a 23 nucleótidos de largo que se unen a secuencias complementarias en el ARN mensajero, bloqueando su expresión a proteína mediante la formación de un complejo proteíco (RISC) donde la proteína DICER es la responsable del corte y posterior degradación del ARNm.

Geisbert diseñó una combinación de siRNA para atacar el ARNm de las siguientes proteínas virales: la proteína L de la ARN polimerasa del virus del Ébola y las proteína virales 24 y 35; luego la puso dentro de una cápsula formada por partículas lipídicas (SNALPs) para que pudieran ser administradas a los infectados y puedan ser asimiladas por las células para liberar su contenido dentro de ellas y empiecen a realizar su función de silenciar la expresión de la ARN polimerasa del virus y otras proteínas importantes en la diseminación del virus y el desarrollo de la fiebre hemorrágica.

Se hicieron los experimentos en 7 macacos. Al primer grupo de 3 individuos se les dio una dosis de 2mg/kg vía intravenosa después de 30 minutos y a los 1, 3 y 5 días de haber sido infectados con el virus del Ébola y al segundo grupo de 4 individuos se les dio la misma dosis pero a los 30 minutos y a los 1, 2, 3 ,4, 5, 6 días de haber sido infectados. Los resultados fueron muy alentadores, 6 macacos soportaron el tratamiento y quedaron protegidos contra el virus del Ébola, solo un macaco —perteneciente al primer grupo— no sobrevivió. A pesar de la mayor dosis en el segundo grupo, no hubo efectos secundarios perjudiciales en los macacos, las enzimas hepáticas que se cree son perjudicadas durante la infección toleraron bien el tratamiento.

Estos resultados son muy alentadores y muestran las potencialidades del uso de los siRNA para el tratamiento de una gran variedad de virus que son de preocupación para la salud pública (gripes, dengue, hepatitis, VIH, Herpes, etc.); además, nos dan una nueva forma de administrar los agentes terapéuticos vía bolsas lipídicas que pueden difundir fácilmente por la membrana celular. Ahora vendrán los primeros ensayos clínicos en pacientes humanos infectados con el Ébola.

Referencia:

ResearchBlogging.orgGeisbert, T, & et al. (2010). Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study The Lancet, 375 (9729), 1896-1905 : 10.1016/S0140-6736(10)60357-1

Entendiendo la producción de carotenoides en áfidos

Los carotenoides cumplen una serie de roles ecológicos y metabólicos en los organismos. Los genes que codifican las enzimas necesarias para su biosíntesis se encuentran ampliamente distribuidas en las Bacterias, Arqueas, Hongos y Plantas. Los animales requieren de carotenoides porque cumplen importantes funciones: son antioxidantes, moduladores del sistema inmune y precursores de pigmentos visuales. Sin embargo, no se conoce ningún animal que tenga la capacidad de producirlo por sí mismo así que lo obtienen directamente de sus alimentos.

Entomólogos habían observado un extraño patrón de color en una especie de áfidos, Acyrthosiphon pisum. Habían individuos que eran de color rojo y otros de color verde. Los áfidos rojos eran preferentemente comidos por las mariquitas mientras que las verdes eran usados por una avispa para depositar sus huevos. Pero, ¿por qué eran de diferentes colores?. Se ve claramente que el color tiene una importancia ecológica, en la relación depredador-presa y parásito-huésped. Los áfidos verdes tienen α-, β- y γ-carotenos (compuestos amarillos y naranjas) mientras que los áfidos rojos tienen licopenos y torulenos (compuestos rojos) además de los α-, β-. y γ-carotenos.

image

Pero si los animales carecen de enzimas necesarias para la biosíntesis de los carotenos, ¿de donde salen?. Una primera explicación fue que los áfidos obtenían los carotenos de las plantas que comen —tal como lo hacen todos animales— sin embargo al estudiar la composición y concentración de carotenos de sus alimentos descartaron esta hipótesis. Sus alimentos no les daban la enorme cantidad de carotenos necesarios para teñir su cuerpo. Una segunda explicación fue que sus bacterias endosimbiontes que viven dentro de sus organismos son los que sintetizan los carotenos y los liberan al cuerpo del áfido. Así que estudiaron el genoma de su endosimbionte estricta (Buchnera aphidicola) y de sus dos endosimibiontes facultativas (Hamiltonella defensa y Regiella insecticola) y en ninguno de ellos se encontraron genes relacionados con la biosíntesis de los carotenos, entonces ¿de donde salen?.

También identificaron otra especie de áfidos, Myzus persicae, que tenía el mismo patrón de colores de A. pisum. Al hacer cruces entre rojos y verdes observaron que los áfidos hijos expresaban el color en una distribución mendeliana. Así que concluyeron que son los mismos áfidos los que sintetizan sus propios carotenoides. Si es cierta esta hipótesis, en su genoma deben haber genes relacionados con la biosíntesis de carotenos. Al hacer un estudio del genoma del áfido encontraron siete genes que estaban relacionados con la producción de carotenos (cuatro codificaban para carotenoide desaturasas y tres carotenoides ciclasa y sintasa fusionados). Pero, ¿de donde venían estos genes?

Para determinar de donde venían estos genes hicieron un estudio filogenético de las secuencias y encontraron una alta similaridad con los genes de ciertos hongos. Aunque ciertas plantas y bacterias también presentaban cierta homología con los genes del áfido, sólo en los hongos se encontró a los caroteniodes ciclasa y sintasa fusionados. Tanto M. persicae como A. pisum tienen los mismos genes para la biosíntesis de carotenoides, esto quiere decir que la transferencia horizontal de genes entre el hongo y el áfido se dio en el último ancestro común de estas dos especies. Los genes fueron transferidos —por mecanismos aún desconocidos— del hongo al áfido. No se sabe si el hongo que le transfirió sus genes fue un parásito o un simbionte.

carotenoid[Click para agrandar]

Cuando se hizo el estudio genético, los áfidos verdes no tenían una región de 30kb. Esta región contiene a los genes responsables del color rojo de los otros áfidos. Sin embargo, hay un tercer color, producto de un mutante natural del áfido rojo, el cual tiene sólo un nucleótido diferente. Este cambio de nucleótido provoca que uno de los aminoácidos del sitio activo de una de las desaturasas sea reemplazado por otro, inactivando a la enzima y volviendo al áfido amarillo.

Esta transferencia horizontal de genes ha contribuido enormemente a las relaciones interespecíficas entre el áfido y sus parásitos y depredadores. Posiblemente la transferencia se dio hace unos 30 a 80 millones de años atrás, momento en que se cree vivió el ancestro común de M. persicae y A. pisum. Este descubrimiento abre el camino a un nuevo enfoque de la dinámica de los procesos evolutivos. Posiblemente, la transferencia horizontal de genes es un proceso más común de lo que se cree y tal vez sea uno de los principales motores de la evolución.

Referencia:

ResearchBlogging.orgMoran, N., & Jarvik, T. (2010). Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids Science, 328 (5978), 624-627 DOI: 10.1126/science.1187113

Diferencia entre Laboratorista y Ecologista